Synthesis and structures of o-phenylene-bridged $\mathrm{Cp} / \mathrm{phosph}$ inoamide titanium complexes

Chun Ji Wu, Sang Hoon Lee, Hoseop Yun, Bun Yeoul Lee *
Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea

Received 25 July 2006; received in revised form 25 August 2006; accepted 5 September 2006
Available online 19 September 2006

Abstract

Addition of $\mathrm{R}^{\prime}{ }_{2} \mathrm{PCl}$ to anilines substituted with di- or trimethylcyclopentadienyl unit at ortho-position affords ortho-phenylenebridged $\mathrm{Me}_{2} \mathrm{Cp}$ or $\mathrm{Me}_{3} \mathrm{Cp} /$ phosophinoamide ligands, $2-\left(\mathrm{RMe}_{2} \mathrm{C}_{5} \mathrm{H}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHPR}_{2}\left(\mathrm{R}=\mathrm{Me}\right.$ or $\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{Ph}$, Pr , or Cyclohexyl). Successive addition of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ to the ligands affords the desired dichlorotitanium complexes, $\left[2-\left(\eta^{5}-\mathrm{RMe}_{2} \mathrm{C}_{5} \mathrm{H}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NPR}^{\prime}{ }_{2}-\right.$ $\left.\kappa^{2} N, P\right]_{\mathrm{TiCl}}^{2} 2\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ph}, \mathbf{9} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}, \mathbf{1 0} ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{iPr}, \mathbf{1 1} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{iPr}, \mathbf{1 2} ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Cy}, \mathbf{1 3} ; \mathrm{R}=\mathrm{Me}\right.$, $\left.\mathrm{R}^{\prime}=\mathrm{Cy}, \mathbf{1 4}\right)$. By using $\mathrm{Zr}\left(\mathrm{NMe}_{2}\right)_{4}$ instead of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$, a zirconium complex, $\left[2-\left(\eta^{5}-\mathrm{Me}_{3} \mathrm{C}_{5} \mathrm{H}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NP}(\mathrm{iPr})_{2}-\kappa^{2} N, P\right] \mathrm{ZrCl}_{2}(\mathbf{1 5})$ is prepared. Molecular structures of $\mathbf{1 0}, \mathbf{1 4}$ and $\left[2-\left(\eta^{5}-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NPPh}_{2}-\kappa N\right] \mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2}(\mathbf{1 6})$ were determined. The metric parameters determined on the X-ray crystallographic studies and the chemical shifts of the ${ }^{31} \mathrm{P}$ NMR signal indicate that the phosphorous atom coordinates to the titanium in the dichloro-complexes $\mathbf{9 - 1 5}$. The titanium and zirconium complexes show negligible activity in ethylene and ethylene/1-hexene (co) polymerization when activated with MAO or $\mathrm{iBu} \mathrm{B}_{3} \mathrm{Al} /\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. © 2006 Elsevier B.V. All rights reserved.

Keywords: Phosphinoamide; Constrained geometry catalyst; Titanium complexes; Cyclopentadienyl

1. Introduction

The Constrained-Geometry Catalyst (CGC), $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{4} \mathrm{C}_{5}\right)\left(\mathrm{N}^{t} \mathrm{Bu}\right)\right] \mathrm{TiCl}_{2}$ [1] typically represents the homogeneous Ziegler-Natta catalysts [2]. Various modifications have been successfully carried out either by replacement of the $\mathrm{Me}_{4} \mathrm{C}_{5}$-unit with other π-donor ligands [3] or by replacement of the $\mathrm{N}^{t} \mathrm{Bu}$-unit with other amides or phosphides [4], but modification on the bridge has not been so abundant and successful [5]. Recently, we disclosed a novel preparation route for o-phenylene-bridged (dimethyl or trimethylcyclopentadienyl)/(amide or sulfonamide) ligand system [6]. Suzuki coupling reaction of 2-bromoaniline compounds with 2-dihydroxyboryl-3,4-dimethyl-2-cyclop-enten-1-one or 2-dihydroxyboryl-3-methyl-2-cyclopenten-

[^0]1 -one is a key step in the route (Eq. (1)). Replacement of the silylene-bridge with o-phenylene group leads to a structural change of narrower Cp (cent) $-\mathrm{Ti}-\mathrm{N}$ angle, indicative of more "constrained feature" in the o-phenylene bridged complexes [6]. While the silicon atom in the CGC is severely deviated from the cyclopentadienyl plane [7], the elements constituting the chlelation in the o-phenylene bridged complexes are not situated in a severely strained position. Some complexes are superior to the CGC in ethylene/ α-olefin copolymerization in terms of activity, α-olefin incorporation, and molecular weight of the obtained polymer. Herein, we report titanium complexes derived from o-phenylenebridged di- or trimethylcyclopentadienyl/phosphinoamide ligands. Coordination chemistry utilizing phosphinoamide ligand $\left(\left[\mathrm{R}_{2} \mathrm{P}-\mathrm{NR}^{\prime}\right]^{-}\right)$has drawn extensive attention recently [8]. Bis(phosphinoamido)titanium and zirconium dichloride [9] and unbridged $\mathrm{Cp}^{*} /$ phosphinoamide titanium complexes, $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNR}\right)(\mathrm{R}=\mathrm{tBu}, \mathrm{nBu}$, and Ph$)$ [10] were prepared to be tested as a polymerization catalyst
but the bridged Cp /phosphinoamide analogues have not been reported yet.

2. Results and discussion

2.1. Synthesis and characterization

Aniline compounds substituted with dimethylcyclopentadienyl or trimethylcyclopentadienyl-unit at ortho-position, 2- $\left(\mathrm{RMe}_{2} \mathrm{C}_{5} \mathrm{H}_{2}\right) \mathrm{R}^{\prime}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}_{2}$ are prepared through the Suzuki-coupling reaction of 2-bromoanilines with 2 -dihydroxyboryl-3,4-dimethyl-2-cyclopenten-1-one or 2-dihydroxyboryl-3-methyl-2-cyclopenten-1-one (Scheme 1). Addition of $\mathrm{R}^{\prime}{ }_{2} \mathrm{PCl}\left(\mathrm{R}^{\prime}=\right.$ phenyl, isopropyl, cyclohexyl) to the aniline derivatives in the presence of pyridine affords $3-8$ in $60-90 \%$ yields. In case of the diphenylphosphino compounds, 3 and 4 addition of 1 equivalent of $\mathrm{Ph}_{2} \mathrm{PCl}$ affords the desired compound and they are isolated as a solid by recrystallization in pentane. In case of the reactions of $\mathrm{Pr}_{2} \mathrm{PCl}$ and $\mathrm{Cy}_{2} \mathrm{PCl}$, addition of slight excess of chlorophosphine (1.3 equivalents) is required for complete conversions. The remained $\mathrm{iPr}_{2} \mathrm{PCl}$ can be easily removed by evacuation and spectroscopically pure 5 and $\mathbf{6}$ are afforded as oil. The remaining $\mathrm{Cy}_{2} \mathrm{PCl}$ cannot be routinely removed by the evacuation and 7and $\mathbf{8}$ are obtained, contaminated with some $\mathrm{Cy}_{2} \mathrm{PCl}$, which is used for the next reaction without further purification. The compounds are characterized by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectroscopy

Scheme 1. (i) $2-\mathrm{BrC}_{6} \mathrm{H}_{2}\left(\mathrm{R}^{\prime}\right)_{2} \mathrm{NH}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($1 \mathrm{~mol} \%$); (ii) $\mathrm{MeLi} / \mathrm{CeCl}_{3}$, then $\mathrm{HCl}(2 \mathrm{~N})$; (iii) $\mathrm{R}^{\prime}{ }_{2} \mathrm{PCl}$, pyridine; (iv) $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$ and (v) $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$.
and the signals can be unambiguously assigned. Usually, a mixture of isomers is obtained for substituted cyclopentadiene compounds by the facile 1,5 -sigmatropic rearrangement [11], but compounds $\mathbf{3 - 8}$ exist as a single isomer at room temperature, showing only a set of signals in the NMR spectra. The isomer where two hydrogens are attached on the sp^{3}-carbon is substantially thermodynamically more stable and the isomer is predominant at room temperature. Signal of the two protons attached on the sp^{3}-carbon of the cyclopentadiene unit are observed as an AB spin system in the ${ }^{1} \mathrm{H}$ NMR spectra, which implies that the rotation around carbon-carbon bond between the cyclopentadiene and phenylene is not free in the NMR time scale. The proton attached at the 6 -position of the pheny-lene-unit is coupled with phosphorous with a coupling constant of ${ }^{4} J_{\mathrm{PH}}=3-4 \mathrm{~Hz}$. In the ${ }^{1} \mathrm{H}$ NMR spectra of 5 and $\mathbf{6}$, four isopropyl CH_{3}-signals are observed around 1 ppm as a doublet of doublet coupled with the phosphorous and the isopropyl-CH proton. Two signals show coupling constants of ${ }^{3} J_{\mathrm{HH}}=6.8$ and ${ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}$ while the other two exhibiting the coupling constants of ${ }^{3} J_{\mathrm{HH}}=6.8$ and ${ }^{3} J_{\mathrm{PH}}=16 \mathrm{~Hz}$. In the ${ }^{13} \mathrm{C}$ NMR spectra, the 1,2 and 6 -carbons on the phenylene are coupled with phosphorus and observed as a doublet with coupling constants of ${ }^{2} J_{\mathrm{PC}}=$ $17,{ }^{3} J_{\mathrm{PC}}=4$, and ${ }^{3} J_{\mathrm{PC}}=22 \mathrm{ppm}$ at $\sim 146, \sim 124$, and $\sim 114 \mathrm{ppm}$, respectively.

Reaction of $\mathbf{3 - 8}$ with equimolar amount of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$ in benzene at $80^{\circ} \mathrm{C}$ for 15 h affords a bis(dimethylamido)titanium complex. A single $\mathrm{Me}_{2} \mathrm{~N}$-signal is observed as a singlet in the ${ }^{1} \mathrm{H}$ NMR spectra of the symmetrically substituted dimethylcyclopentadienyl complexes but two $\mathrm{Me}_{2} \mathrm{~N}$-signals are observed for the trimethylcyclopentadienyl complexes. The phosphorus signals in the ${ }^{31} \mathrm{P}$ NMR spectra are not severely shifted by the metallation, which implies that the phosphorus atom does not coordinate with the titanium in the $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2}$ Ti-complexes. The coupling constants between phosphorous and $\mathrm{C}-6$ carbon on the phenylene (${ }^{3} J_{\mathrm{PC}}$) are significantly changed by metallation ($\sim 21 \mathrm{~Hz}$ for $3-8$ versus 6 Hz for the $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2}$ Ti-complexes). The dependence of the coupling constants on the dihedral angle has been found empirically in many cases [12]. The phosphorous atom is not situated on the phenylene plane in the ligands $\mathbf{3 - 8}$ but it becomes coplanar with the phenylene plane by the metallation which triggers change of the $\mathrm{P}-\mathrm{N}-\mathrm{C}^{1}-\mathrm{C}^{6}$ dihedral angle, consequently leading to the change of the coupling constant.

When $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ is employed as a chlorinating agent, the ${ }^{1} \mathrm{H}$ NMR spectra indicate that both $\mathrm{Me}_{2} \mathrm{~N}$-ligands are replaced with the chloride ligands [13]. By the chlorination, chemical shifts of the phosphorous signals are dramatically upfield-shifted from $\sim 45 \mathrm{ppm}$ to $\sim 7 \mathrm{ppm}$ for the diphenylphosphino complexes. Similarly, large chemicalshift change $((\Delta$ (chemical shifts $)=\sim 36 \mathrm{ppm})$ is observed in the diisopropylphosphino and the dicyclohexylphosphino complexes. The dramatic chemical-shift change suggests the coordination of the phosphorous atom to the titanium. The coupling constants between phosphorous
and C-6 carbon on the phenylene (${ }^{3} J_{\mathrm{PC}}$) are not changed significantly by the chlorination (3 Hz for $9-14$).

A zirconium complex is prepared from 6 by using $\mathrm{Zr}\left(\mathrm{NMe}_{2}\right)_{4}$ instead of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$ (equation 2). The phosphorus signal is observed at 44 and 34 ppm in the ${ }^{13} \mathrm{P}$ NMR spectra of the $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{Zr}$-complex and $\mathrm{Cl}_{2} \mathrm{Zr}$-complex, respectively. For the titanium complexes, slight change of the ${ }^{31} \mathrm{P}$ chemical shift is observed by metallation to $\left(\mathrm{NMe}_{2}\right)_{2}$-Ti complexes (Δ (chemical shifts) $<5 \mathrm{ppm}$) but significant chemical-shift change $((\Delta$ (chemical shifts) $=30-40 \mathrm{ppm})$ is observed by replacing the $\mathrm{Me}_{2} \mathrm{~N}$ ligand with the chloride ligand. We attribute the large change of the chemical shift to the coordination of the phosphorus with the titanium. In the case of zirconium, chemical-shift change (Δ (chemical shifts)) of 17 ppm is observed in the first metallation to the $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{Zr}$-complex and an additional 10 ppm change occurs in the second chlorination step. We assume that phosphorus atom coordinates with the zirconium in both $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{Zr}$ - and $\mathrm{Cl}_{2} \mathrm{Zr}$ complexes with stronger interaction in the latter complex. The signal pattern of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra is not far from that observed for the corresponding titanium complex.

2.2. X-ray crystallographic studies

Single crystals of $\mathbf{1 0}$ suitable for X-ray crystallography are obtained by vapor-phase addition of pentane to a benzene solution. Fig. 1 shows the structure, and the selected bond distances and angles are tabulated in Table 1. The Ti-P distance $(2.6881(19) \AA)$ is close to those observed for titanium complexes coordinated with phosphine ligand

Fig. 1. Thermal ellipsoid plot (30% probability level) of 10. Hydrogen atoms are omitted for clarity.
$(\approx 2.63 \AA)[14]$ indicating a chemical bonding between these two atoms, but it is somewhat longer than those observed for the unbridged analogues, $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNtBu}\right)$ $(2.4928(9) \AA)$ and $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNPh}\right)(2.477(2) \AA) .{ }^{10}$ By the coordination, $\mathrm{C}(10)-\mathrm{N}-\mathrm{P} \quad\left(129.9(2)^{\circ}\right.$ angle is increased from the ideal 120° while $\mathrm{Ti}-\mathrm{N}-\mathrm{P}$ angle $\left(95.93(15)^{\circ}\right.$ is contracted. The $\mathrm{Ti}-\mathrm{N}$ distance $(1.935(3) \AA)$ is longer than those observed for [2-($\left.\eta^{5}-2,3,5-\mathrm{Me}_{3} \mathrm{C}_{5} \mathrm{H}\right)$ $\left.\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}_{6} \mathrm{H}_{11}\right] \mathrm{TiCl}_{2}(1.9003(13) \AA)^{6 a}$ and the standard CGC $(1.907(4) \AA)^{7}$ but substantially shorter than those observed for the sulfonamide complex, $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\eta^{5}-\mathrm{Me}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{C}_{5}\right)(\mathrm{NTs}-\kappa N, O)\right] \mathrm{TiCl}_{2}(2.005(5) \AA)^{6 b}$ and the unbridged complexes $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNtBu}\right) \quad(2.004(2) \AA)$ and $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNPh}\right)(1.983(5) \AA)$. The $\mathrm{P}-\mathrm{N}$ distance $(1.677(3) \AA)$ is slightly longer than those observed for the unbridged analogues $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNtBu}\right)(1.638(2) \AA)$ and $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNPh}\right)(1.652(5) \AA)$. The Cp (cent)-$\mathrm{Ti}-\mathrm{N}$ angle has been used as a qualitative measure for the "constrained geometry". The smaller the Cp (cent)-

Table 1
Selected bond distances $\left(\AA\right.$) and angles $\left({ }^{\circ}\right)$

	10	14	16
Ti-P	2.6881(19)	2.621(3)	3.0343(12)
Ti-NP	1.935 (3)	1.919(6)	2.034(2)
Ti-Cp ${ }^{\text {Centroid }}$	2.032	2.031	2.042
$\mathrm{Ti}-\mathrm{Cl}$ or $\mathrm{Ti}-\mathrm{NMe}_{2}$	$2.2934(19) 2.300(2)$	2.299(2) 2.293(2)	1.907(3) 1.905(3)
$\mathrm{P}-\mathrm{N}$	1.677(3)	1.667(6)	$1.697(3)$
$\mathrm{Cp}^{\text {Centroid }}-\mathrm{Ti}-\mathrm{NP}$	103.19	102.19	104.08
$\mathrm{C}^{\text {Bridge }}-\mathrm{N}-\mathrm{P}$	134.1(2)	135.6(6)	126.45(19)
Ti-N-P	95.93(15)	93.6(3)	108.49(13)
$\mathrm{Ti}-\mathrm{N}-\mathrm{C}^{\text {Bridge }}$	129.9(2)	130.8(5)	124.54(19)
$\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ (or $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{Ti}-\mathrm{NMe}_{2}$)	108.01(9)	104.97(9)	101.72(14)
$\mathrm{C}^{\text {Bridgehead }}{ }_{-} \mathrm{Cp}^{\text {Centroid }}-\mathrm{Ti}$	88.55	89.00	89.81
$\mathrm{Cp}^{\text {Centroid }}-\mathrm{C}^{\text {Bridgehead }}-\mathrm{C}^{\text {Bridge }}$	171.66	172.98	170.65
$\mathrm{C}^{\text {Bridgehead }}-\mathrm{C}^{\text {Bridge }}-\mathrm{C}^{\text {Bridge }}$	113.5(3)	112.6(7)	115.0(3)
$\mathrm{C}^{\text {Bridge }}-\mathrm{C}^{\text {Bridge }}-\mathrm{N}$	112.7(3)	112.3(8)	115.5(2)

Ti-N angle is, the more pronounced the "constrained geometry" features should be. The $\mathrm{Cp}($ cent $)-\mathrm{Ti}-\mathrm{N}$ angle (103.19° is larger than those observed for the o-pheny-lene-bridged $\mathrm{Cp} /$ sulfonamido complex, $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\eta^{5}-\mathrm{Me}_{2}-\right.\right.$ $\mathrm{H}_{2} \mathrm{C}_{5}$) $(\mathrm{NTs}-\mathrm{kN}, \mathrm{O}) \mathrm{JTiCl}_{2}\left(100.91^{\circ}\right.$ but it is smaller than those observed for the standard CGC (107.6° and the o-phenylene-bridged $\mathrm{Cp} /$ amido complex, $\quad\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{H}_{2} \mathrm{C}_{5}\right)\left(\mathrm{NC}_{6} \mathrm{H}_{11}-\mathrm{kN}\right)\right] \mathrm{TiCl}_{2}\left(104.8^{\circ}\right.$. The iso-carbon on the phenylene bridge $(C(9))$ is not severely deviated from the cyclopentadienyl plane $(\mathrm{Cp}(\mathrm{cent})-\mathrm{C}(1)-\mathrm{C}(9)$ angle, 171.66° and the Cp (cent)-Ti vector is situated almost perpendicularly to the cyclopentadienyl plane (Ti-Cp(cent)$\mathrm{C}(1)$ angle, 88.55°. The nitrogen atom is trigonal and the sum of bond angle around nitrogen is 360°. The cyclopentadienyl plane is almost perpendicularly situated to the phenylene plane (angle between the plane, $84.41(16)^{\circ}$ and all the Ti, N, and P atoms are situated on the phenylene plane.

Fig. 2 shows the structure of $\mathbf{1 4}$. The phosphorus atom in 14 is a better donor than that in 10 , hence either stronger $\mathrm{Ti}-\mathrm{P}$ or stronger $\mathrm{Ti}-\mathrm{N}$ bonding interaction is expected. As expected, the distances of $\mathrm{Ti}-\mathrm{P}$ and $\mathrm{Ti}-\mathrm{N}$ are shorter than the corresponding distances observed for $\mathbf{1 0}$, respectively (Table 1). The Cp (cent) $-\mathrm{Ti}-\mathrm{N}$ angle (102.19° is slightly smaller than that observed for $\mathbf{1 0}\left(103.19^{\circ}\right.$. Other metrical parameters and molecular shape are close to those observed for $\mathbf{1 0}$.

Fig. 2. Thermal ellipsoid plot (30% probability level) of 14. Hydrogen atoms are omitted for clarity.

Single crystals of the bis(dimethylamido)titanium complex 16 were obtained by recrystallization in pentane $-30^{\circ} \mathrm{C}$. Fig. 3 shows its structure. The Ti-P separation (3.0343(12) \AA) is significantly longer than those observed for $\mathbf{1 0}(2.6881(19) \AA)$ and $\mathbf{1 4}(2.621(3) \AA)$, and it is too large to be considered as a chemical bonding between these two atoms. Similar binding mode change by replacing the dimethylamide ligand with chloride was observed in dimethylsilylene bridged $\mathrm{Me}_{4} \mathrm{C}_{5} /$ hydrazide $\left(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{Si}-\right.$ $\left.\mathrm{Me}_{2}\left(\mathrm{NNMe}_{2}\right)\right)$ titanium complex [15]. Due to the absence of chemical bonding between the P and the Ti , the $\mathrm{Ti}-$ N-P angle increases to $108.49(13)^{\circ}$ from those observed for the P-coordinated complexes 10 and $14\left(95.93(15)^{\circ}\right.$ and $93.6(3)^{\circ}$, respectively) and inversely the $\mathrm{C}(13)-\mathrm{N}-\mathrm{P}$ angle decreases from $134.1(2)^{\circ}$ and $135.6(6)^{\circ}$ to $126.45(19)^{\circ}$. The $\mathrm{Cp}($ cent $)-\mathrm{Ti}-\mathrm{N}$ angle in 16 (104.08° is slightly larger than those in $\mathbf{1 0}$ and $\mathbf{1 4}$. The nitrogen atom is trigonal and the sum of bond angle around the nitrogen is 359.5°. All the Ti, N, and P atoms are situated on the phenylene plane.

2.3. Polymerization studies

The newly prepared complexes are tested for ethylene and ethylene/1-hexene (co)copolymerization after activation with $\left(\mathrm{Ph}_{3} \mathrm{C}\right)\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathrm{iBu}_{3} \mathrm{Al}$ (polymerization conditions: 30 mL toluene solution of 1-hexene (0.3 M), $0.50 \mu \mathrm{~mol} \mathrm{Ti}, 2.0 \mu \mathrm{~mol}$ of $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], 0.200 \mathrm{mmol}$ of $\mathrm{Al}(\mathrm{iBu})_{3}, 60$ psig ethylene, $\left.90^{\circ} \mathrm{C}, 10 \mathrm{~min}\right)$ or after activation with MMAO (polymerization conditions: 30 mL toluene solution of 1-hexene $(0.3 \mathrm{M}), 0.50 \mu \mathrm{~mol} \mathrm{Ti}, \mathrm{Al} / \mathrm{Ti}$, 5000,60 psig ethylene, $90^{\circ} \mathrm{C}, 10 \mathrm{~min}$). All the complexes show negligible activity ($<200 \mathrm{~kg} / \mathrm{molTi} \mathrm{h}$). Additional coordination of phosphorous might be attributed to the low activity [16]. Very low activities compared with the standard CGC were observed with the dimethylsilylene

Fig. 3. Thermal ellipsoid plot (30% probability level) of 16. Hydrogen atoms are omitted for clarity.
bridged $\mathrm{Me}_{4} \mathrm{C}_{5} /$ hydrazide titanium complex $\left[\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{SiMe}_{2}\left(\mathrm{NNMe}_{2}\right) \mathrm{TiCl}_{2}$, where both nitrogens coordinate to the titanium. Activity of the unbridged $\mathrm{Cp} / \mathrm{phos}-$ phinoamide titanium complexes, $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left(\eta^{2}-\mathrm{Ph}_{2} \mathrm{PNR}\right)$ is also low while the similar complexes constructed with monodentate ligand instead of the bidentate phosphinoamide ligand, $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}(\mathrm{~N}=\mathrm{CNR} 2)$ or $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}(\mathrm{OAr})$, show high activity [17].

3. Experimental section

3.1. General remarks

All manipulations were performed under an inert atmosphere using standard glovebox and Schlenk techniques. Toluene, pentane, and $\mathrm{C}_{6} \mathrm{D}_{6}$ were distilled from benzophenone ketyl. NMR spectra were recorded on a Varian Mercury plus 400. Elemental analyses were carried out on a Perkin-Elmer 2400 CHN microanalyzer. Preparation of the starting materials $\mathbf{1}$ and $\mathbf{2}$ was previously reported [6b].

3.2. Compound 3

To a flask containing 2-($\left.\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}(0.113 \mathrm{~g}$, $0.61 \mathrm{mmol})$ in benzene (0.6 mL) was added pyridine $(0.240 \mathrm{~g}, \quad 3.04 \mathrm{mmol})$ and chlorodiphenylphosphine ($0.134 \mathrm{~g}, 0.61 \mathrm{mmol}$). After the solution was stirred for 3 hours at room temperature, the generated white solid was filtered. All volatiles were removed to give a residue which was purified by recrystallization in pentane at $-30^{\circ} \mathrm{C}$. White solid was isolated $(0.144 \mathrm{~g}, 64 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.58$ and $2.67\left(\mathrm{AB},{ }^{2} J=22 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cp}-\mathrm{CH}_{2}\right), 4.75$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.81(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{H})$, $6.79\left(\mathrm{td}, J=1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.94-7.06(\mathrm{~m}, 7 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Ph}\right), 7.09\left(\mathrm{td}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.34-$ $7.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.65\left(\mathrm{dd}, J=3.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.89\left(\mathrm{CH}_{3}\right), 15.00\left(\mathrm{CH}_{3}\right)$, $44.55\left(\mathrm{Cp}-\mathrm{CH}_{2}\right), 115.21\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=22 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right)$, $119.48\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 124.82\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right)$, $125.27(\mathrm{Cp}-\mathrm{CH}), \quad 128.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \quad \mathrm{Ph}-\right.$ meta $)$, $128.80\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 129.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, Ph-meta) , 129.12 (Ph -para) $130.29\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{\text {5 or } 3}\right)$, 131.14 (d, ${ }^{2}$) $\mathrm{CP}^{2}=21 \mathrm{~Hz}, \mathrm{Ph}$-ortho $), 131.30\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=21 \mathrm{~Hz}\right.$, Ph-ortho $)$, $139.77(\mathrm{Cp}), \quad 141.13\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right), \quad 141.52(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right), \quad 142.12(\mathrm{Cp}), \quad 143.60(\mathrm{Cp}), 145.00(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=17 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} . \quad{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 45.56 ppm. Anal. Calc. $\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NP}\right)$: C, $81.28 ; \mathrm{H}, 6.55 ; \mathrm{N}$, 3.79. Found: C, 81.66; H, 6.31; N, 3.91\%.

3.3. Compound 4

The compound was synthesized by the reaction of $\mathbf{2}$ and chlorodiphenylphosphine using same conditions and procedures as for 3 . White solid was isolated by recrystallization in pentane at $-30^{\circ} \mathrm{C}(58 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$
$1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.53 and $2.60\left(\mathrm{AB}, J=22 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cp}-\mathrm{CH}_{2}\right), 4.87(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, ~ \mathrm{NH}$), 6.86 (td, $J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$), 6.98-7.08 (m, 6H, Ph), $7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$), $7.16\left(\mathrm{td}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.38-7.48(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ph}), 7.70\left(\mathrm{dd}, J=3.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 12.09\left(\mathrm{CH}_{3}\right), 13.75\left(\mathrm{CH}_{3}\right), 14.60$ $\left(\mathrm{CH}_{3}\right), 48.91\left(\mathrm{Cp}^{2}-\mathrm{CH}_{2}\right), 115.26\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=21 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{C}^{6}\right), 119.48\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 125.55\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{C}^{2}\right), 128.68\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=7 \mathrm{~Hz}\right.$, Ph-meta), $128.68\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ C^{5} or ${ }^{3}$), 128.71 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6 \mathrm{~Hz}$, Ph-meta), 129.03 (Ph-para) $130.27\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 131.21\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=21 \mathrm{~Hz}\right.$, Ph-ortho $)$, $131.30\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=21 \mathrm{~Hz}\right.$, Ph-ortho), 133.75 (Cp), 13587 $(\mathrm{Cp}), 137.62(\mathrm{Cp}), 140.23(\mathrm{Cp}), 141.25\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=14 \mathrm{~Hz}\right)$, $141.64\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right), 145.09\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=17 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 45.78 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NP}\right)$: C, 81.44; H, 6.86; N, 3.65. Found: C, 81.33; H, 7.01; N, 3.54\%.

3.4. Compound 5

The compound was synthesized by the reaction of $\mathbf{1}$ and chlorodiisopropylphosphine using almost same conditions and procedures as for 3. Excess chlorodiisopropylphosphine (1.3 equivalents) should be added to convert $\mathbf{1}$ completely to the desired product. The remained chlorodiisopropylphosphine could be removed by evacuation. Colorless oil was isolated in 75% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.89\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 0.91\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 0.93\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=16 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 0.95\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=16 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 1.38-1.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.83\left(\mathrm{q}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.74-2.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cp}-$ CH_{2}), $4.01(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.93(\mathrm{dd}, J=1.6$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, ~ \mathrm{Cp}-\mathrm{CH}$), 6.76 (td, $J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$), $7.00\left(\mathrm{dd}, J=1.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.16(\mathrm{td}$, $\left.J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.73(\mathrm{ddd}, J=1.2,4.0,8.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.93\left(\mathrm{CH}_{3}\right)$, $15.01\left(\mathrm{CH}_{3}\right), 17.04\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right), 17.13\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right)$, $19.17\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=20 \mathrm{~Hz}, \mathrm{PCHCH} 3\right), 27.11\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{3}\right), 27.26\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right), 44.64(\mathrm{Cp}-$ $\left.\mathrm{CH}_{2}\right), 114.69\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=22 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 118.14\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ C^{4}), 123.61 (d,presup $3 J_{\mathrm{CP}}=3.0 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}$), 125.06 $(\mathrm{Cp}-\mathrm{CH}), 128.71\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 130.02\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right)$, $140.40(\mathrm{Cp}), 141.68(\mathrm{Cp}), 143.87(\mathrm{Cp}), 147.12(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=16 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \quad \mathrm{ppm} .{ }^{31} \mathrm{P} \quad \mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 61.93 ppm . HRMS-EI $\mathrm{m} / \mathrm{z}=\mathrm{M}^{+}$Calcd. $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NP}\right)$: 301.1959. Found: 301.1958.

3.5. Compound 6

The compound was synthesized by the reaction of $\mathbf{2}$ and chlorodiisopropylphosphine using almost same conditions and procedures as for $\mathbf{5}$. Colorless oil was isolated in 52% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.92\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 0.94\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$,
$\left.{ }^{3} J_{\mathrm{PH}}=16 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 0.95\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 0.98\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=16 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.38-1.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})$, $1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69$ and $2.79(\mathrm{AB}$, $\left.J=22.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cp}-\mathrm{CH}_{2}\right), 4.12(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $6.81\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.20\left(\mathrm{t}, \quad J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.80$ $\left(\mathrm{dd}, J=4.0, \quad 8.0 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{4}\right) \quad \mathrm{ppm} . \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 12.15\left(\mathrm{CH}_{3}\right), 13.85\left(\mathrm{CH}_{3}\right), 14.67\left(\mathrm{CH}_{3}\right)$, $17.07\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=7 \mathrm{~Hz}\right), 17.13\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=7 \mathrm{~Hz}\right), 19.13(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=20 \mathrm{~Hz}, \quad \mathrm{PCHCH}_{3}\right), \quad 19.20 \quad\left(\mathrm{~d}, \quad{ }^{2} J_{\mathrm{CP}}=20 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{3}\right), 27.10\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}, \mathrm{PCHCH} 3\right), 27.20(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}, \quad \mathrm{PCHCH} 3\right), 49.00\left({\left.\mathrm{Cp}-\mathrm{CH}_{2}\right), 114.64(\mathrm{~d},}^{2}\right.$ $\left.{ }^{3} J_{\mathrm{CP}}=21 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right)$, $118.12\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 124.26(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=3.0 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 128.58\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 130.06$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 133.57(\mathrm{Cp}), 136.04(\mathrm{Cp}), 137.21(\mathrm{Cp})$, $140.81(\mathrm{Cp}), 147.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=16 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 61.77 \mathrm{ppm}$. HRMS-EI $\mathrm{m} / \mathrm{z}=\mathrm{M}^{+}$Calcd. $\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NP}\right)$: 315.2116 . Found: 315.2118 .

3.6. Compound 7

The compound was synthesized by the reaction of $\mathbf{1}$ and chlorodicyclohexylphosphine using almost same conditions and procedures as for 3. Excess chlorodicyclohexylphosphine (1.3 equivalents) should be added to convert $\mathbf{1}$ completely to the desired product. The remained chlorodicyclohexylphosphine could not be removed from the product by evacuation, The product was obtained contaminated with some chlorodicyclohexylphosphine in 82% yield, which is used for the next reaction without further purification. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.06-1.78(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Cy})$, $1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.90\left(\mathrm{q}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.79-$ $2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cp}-\mathrm{CH}_{2}\right), 4.11(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, $5.96(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 6.81(\mathrm{td}, J=1.2,7.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.06\left(\mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.22$ ($\mathrm{td}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.80 (ddd, $J=0.8,4.0$, $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 15.02$ $\left(\mathrm{CH}_{3}\right), 15.07\left(\mathrm{CH}_{3}\right), 27.1-27.7(\mathrm{~m}, \mathrm{P}-\mathrm{Cy}), 29.54(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=18 \mathrm{~Hz}, \quad$ PCHCH 2$), \quad 29.59 \quad\left(\mathrm{~d}, \quad{ }^{2} J_{\mathrm{CP}}=18 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{2}\right), \quad 37.00\left(\mathrm{~d}, \quad{ }^{1} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right), \quad 37.13 \quad(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right), 44.71\left(\mathrm{Cp}^{2}-\mathrm{CH}_{2}\right), 114.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=21 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 118.04\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 123.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 125.07(\mathrm{Cp}-\mathrm{CH}), 128.63\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 129.96$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 140.58(\mathrm{Cp}), 141.61(\mathrm{Cp}), 143.90(\mathrm{Cp})$, $147.39\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=16 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta \quad 56.32 \mathrm{ppm}$. HRMS-EI $\quad \mathrm{m} / \mathrm{z}=\mathrm{M}^{+}$Calcd. $\left(\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NP}\right)$: 381.2585 . Found: 381.2585.

3.7. Compound $\mathbf{8}$

The compound was synthesized by the reaction of $\mathbf{2}$ and chlorodicyclohexylphosphine using almost same conditions and procedures as for 7. The product was obtained contaminated with some chlorodicyclohexylphosphine in 75% yield, which is used for the next reaction without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.02-1.72(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Cy})$,
$1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.71 and $2.80\left(\mathrm{AB}, J=22.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cp}-\mathrm{CH}_{2}\right), 4.16(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.81(\mathrm{td}, J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.06\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.21(\mathrm{td}, J=1.6$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.75 (dd, $J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 12.19\left(\mathrm{CH}_{3}\right), 13.83\left(\mathrm{CH}_{3}\right)$, $14.72\left(\mathrm{CH}_{3}\right), 26.8-27.8(\mathrm{~m}, \mathrm{P}-\mathrm{Cy}), 29.54\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=18 \mathrm{~Hz}\right.$, $\mathrm{PCHCH} 2), 29.57\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=18 \mathrm{~Hz}, \mathrm{PCHCH}_{2}\right), 36.97(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right), 37.16\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=13 \mathrm{~Hz}\right), 49.07\left(\mathrm{Cp}^{2}-\mathrm{CH}_{2}\right)$, $114.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=22 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 118.07\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right)$, $124.38\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 128.54\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 129.97\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ C^{5} or ${ }^{3}$), $133.60(\mathrm{Cp}), 136.15(\mathrm{Cp}), 137.12(\mathrm{Cp}), 141.04$ $(\mathrm{Cp}), 147.41\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=17 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta \quad \delta 6.77 \mathrm{ppm}$. HRMS-EI $\mathrm{m} / \mathrm{z}=\mathrm{M}^{+}$Calcd. $\left(\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NP}\right)$: 395.2742 . Found: 395.2741.

3.8. Compound 9

Compound $3(0.144 \mathrm{~g}, 0.39 \mathrm{mmol}), \mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}(0.092 \mathrm{~g}$, $0.041 \mathrm{mmol})$ and benzene $(1.5 \mathrm{~mL})$ were added into a sealable tube. The solution was stirred overnight at $80^{\circ} \mathrm{C}$. Removal of solvent gave red solid which was pure by the NMR analysis. Single crystals of the bis(dimethylamido)titanium complex were obtained by recrystallization in pentane at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.97(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), $3.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 5.81(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{Cp}-\mathrm{CH}), 6.70-6.82(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 2 \mathrm{H})$, 7.09-7.18 (m, 5H, ph-H), 7.62-7.72 (m, 4H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 13.37\left(\mathrm{CH}_{3}\right), 50.21\left(\mathrm{NCH}_{3}\right), 50.26\left(\mathrm{NCH}_{3}\right)$, $110.24\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 119.57\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right)$, 119.79 ($\mathrm{Cp}-\mathrm{CH}$), $127.26 \quad\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), \quad 127.71 \quad\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ C^{5} or $\left.{ }^{3}\right), 127.71\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 128.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=7 \mathrm{~Hz}, \mathrm{Ph}-\right.$ meta), 128.55 (Ph -para), $129.08\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right.$), 131.07 ($\mathrm{d},{ }^{2} J_{\mathrm{CP}}=18 \mathrm{~Hz}$, Ph-ortho), $137.13\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right)$, $140.19\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=33 \mathrm{~Hz}\right), 161.38\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ ${ }^{1}$) ppm. ${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 40.67 \mathrm{ppm}$. To a flask containing the resulting bis(dimethylamido)titanium complex in benzene $(1.5 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{SiCl}_{2}(0.14 \mathrm{~mL}$, $1.2 \mathrm{mmol})$. After the solution was stirred for 3 hours at room temperature, all volatiles were removed under vacuum to give a yellow residue. The residue was dissolved in CHCl_{3} and filtered over Celite. After removing solvent, the residue was triturated in pentane to give brownish red solid $(0.14 \mathrm{~g}, 72 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.03$ (s, 6 H , CH_{3}), $6.46\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.83(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cp}-$ $\mathrm{CH}), 7.15\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.36-7.48\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$), 7.57-7.63$ (m, 4H, ph-CH) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.96$ $\left(\mathrm{CH}_{3}\right), 114.69\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 121.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{C}^{6}\right), 124.44(\mathrm{Cp}-\mathrm{CH}), 128.44\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 128.54(\mathrm{~d}$, ${ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \quad \mathrm{Ph}$-meta), 129.96 (Ph-para), 130.29 (d, $\left.{ }^{1} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right), 130.61\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 132.11$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CP}}=14 \mathrm{~Hz}, \mathrm{Ph}\right.$-ortho $), 139.98\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 142.34$ ($\left.\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right), 161.25\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm}$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.73 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{NPTi}\right): \mathrm{C}, 61.76$; H, 4.56; N, 2.88. Found: C, 61.97; H, 4.43; N, 3.21\%.

3.9. Compound 10

The complex was synthesized from 4 using same conditions and procedures as for 9 . Overall yield from 4 was 86%. The NMR data for the bis(dimethylamido)titanium complex: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93$ (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.90\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.42\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 5.90$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{CH}$), 6.62-6.74 (m, 2H), 7.02-7.14 (m, 8 H), $7.52-7.58(\mathrm{~m}, 2 \mathrm{H}), \quad 7.66-7.72(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 11.90\left(\mathrm{CH}_{3}\right), 12.68\left(\mathrm{CH}_{3}\right), 12.92\left(\mathrm{CH}_{3}\right)$, $48.07\left(\mathrm{NCH}_{3}\right), 52.08\left(\mathrm{NCH}_{3}\right), 52.18\left(\mathrm{NCH}_{3}\right), 114.60$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 119.61\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 119.71\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 119.72$ $(\mathrm{Cp}-\mathrm{CH}), 120.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 124.40(\mathrm{Cp}-$ $\left.C \mathrm{CH}_{3}\right), \quad 127.31 \quad\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), \quad 127.47 \quad\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right)$, $128.30\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right.$, Ph-meta), $128.34\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right.$, Ph-meta), 128.72 (Ph-para), 129.65 (d, ${ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}$, $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}$), $130.55\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=17 \mathrm{~Hz}\right.$, Ph-ortho), 131.27 (d, ${ }^{2} J_{\mathrm{CP}}=19 \mathrm{~Hz}$, Ph-ortho), 136.92 (Cp-C $\left.{ }^{\text {bridgehead }}\right), 140.47$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=34 \mathrm{~Hz}\right), 141.40\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=34 \mathrm{~Hz}\right), 161.84(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=10 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right)$ ppm. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 42.21 ppm . Single crystals of $\mathbf{1 0}$ were obtained by vaporphase addition of pentane to a benzene solution. The analytical data for 10: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{H})$, $6.53\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.82(\mathrm{td}, J=1.6,7.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.86\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.92-7.04(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ph}), 7.09\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.47-7.66(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{Ph})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 12.69\left(\mathrm{CH}_{3}\right)$, $14.40\left(\mathrm{CH}_{3}\right), 15.23\left(\mathrm{CH}_{3}\right), 115.15\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 121.58(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 124.39(\mathrm{Cp}-\mathrm{CH}), 128.73\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{C}^{5 \text { or } 3}\right), 128.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right.$, Ph-meta), $128.87(\mathrm{~d}$, ${ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{Ph}-$ meta $), 128.93\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or 3$), 129.98(\mathrm{Ph}-$ para), 130.11 (Ph-para), $131.51\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right), 131.51$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right), \quad 131.58 \quad\left(\mathrm{~d}, \quad{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right)$, $131.81\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 132.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=15 \mathrm{~Hz}, \mathrm{Ph}\right.$-ortho $)$, $132.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=15 \mathrm{~Hz}\right.$, Ph-ortho $)$, $139.13\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right)$, $139.40\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 142.24\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right), 162.19(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \quad$ ppm. ${ }^{31} \mathrm{P} \quad \mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \quad \delta$ 6.33 ppm . Anal. Calc. $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NPTi}\right): \mathrm{C}, 62.43 ; \mathrm{H}$, 4.84; N, 2.80. Found: C, 62.11; H, 5.11; N, 2.88\%.

3.10. Compound 11

The complex was synthesized from 5 using same conditions and procedures as for 9 . Overall yield from 5 was 75%. The NMR data for the bis(dimethylamido)titanium complex: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.99\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.21\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=18 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.48(\mathrm{sep}-$ tet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 3.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.16(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 5.67(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.88\left(\mathrm{td}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.14(\mathrm{dd}$, $\left.J=2.0,7.2 \mathrm{~Hz}, \quad 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.18 \quad(\mathrm{ddd}, \quad J=1.6,7.2$, $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 13.38$ $\left(\mathrm{CH}_{3}\right), 20.57\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=9 \mathrm{~Hz}\right), 22.15\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=33 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{3}\right), \quad 28.48\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=27 \mathrm{~Hz}, \quad \mathrm{PCHCH} 3\right), \quad 51.00$ $\left(\mathrm{NCH}_{3}\right), 51.07\left(\mathrm{NCH}_{3}\right), 110.42\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 116.90(\mathrm{~d}$,
$\left.{ }^{3} J_{\mathrm{CP}}=5 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), \quad 119.39(\mathrm{Cp}-\mathrm{CH}), \quad 127.49 \quad(\mathrm{Cp}-$ $\left.C \mathrm{CH}_{3}\right), 128.05\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 128.60 \quad\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 128.96\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or 3$)$, $137.22\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right)$, $164.30\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 63.21 \mathrm{ppm}$. The analytical data for 11: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.96\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=14 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 1.22\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=20 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 1.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28$ (septet, $J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}), 6.34\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.51(\mathrm{~s}, 2 \mathrm{H}$, Cp-H), $6.94\left(\mathrm{t}, \quad J=7.2 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.03$ (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.08(\mathrm{td}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.69\left(\mathrm{CH}_{3}\right), 19.26$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=3 \mathrm{~Hz}\right), \quad 21.03 \quad\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=20 \mathrm{~Hz}, \quad \mathrm{PCHCH} 3\right)$, $30.46\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=14 \mathrm{~Hz}, \quad \mathrm{PCHCH} 3\right), 113.81\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right)$, $121.90 \quad\left(\mathrm{~d}, \quad{ }^{3} J_{\mathrm{CP}}=3 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), \quad 124.34 \quad(\mathrm{Cp}-\mathrm{CH})$, $128.96\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 128.99\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right)$, $130.87(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 137.78\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 141.14(\mathrm{Cp}-$ $\left.C^{\text {bridgehead }}\right), 163.31\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \quad 28.53 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{NPTi}\right): \mathrm{C}, 54.57$; H, 6.27; N, 3.35. Found: C, 54.72 ; H, 6.43; N, 3.12%.

3.11. Compound 12

The complex was synthesized from 6 using same conditions and procedures as for 9 . Overall yield from 6 was 67%. The NMR data for the bis(dimethylamido)titanium complex: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.81\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.19\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.19\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=18 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.24\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=18 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.82(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50$ (septet, $J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}), 2.94(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH} 3), 3.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 5.91$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 6.89\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.90(\mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.17\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $7.20\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 11.59\left(\mathrm{CH}_{3}\right), 12.67\left(\mathrm{CH}_{3}\right), 12.71\left(\mathrm{CH}_{3}\right), 19.84(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=9 \mathrm{~Hz}\right), \quad 21.02 \quad\left(\mathrm{~d}, \quad{ }^{1} J_{\mathrm{CP}}=9 \mathrm{~Hz}\right), \quad 21.29 \quad(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=33 \mathrm{~Hz}, \quad \mathrm{PCHCH} 3\right), \quad 23.14 \quad\left(\mathrm{~d}, \quad{ }^{2} J_{\mathrm{CP}}=37 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{3}\right), 27.50\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=26 \mathrm{~Hz}, \mathrm{PCHCH} 3\right), 29.60(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=30 \mathrm{~Hz}, \mathrm{PCHCH} 3\right), 44.24\left(\mathrm{NCH}_{3}\right), 48.16\left(\mathrm{NCH}_{3}\right)$, $53.50\left(\mathrm{NCH}_{3}\right), 53.62\left(\mathrm{NCH}_{3}\right), 114.76\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 117.00$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 119.13(\mathrm{Cp}-\mathrm{CH}), 119.68(\mathrm{Cp}-$ $\left.\mathrm{CCH}_{3}\right), 122.95\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 127.04\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 128.96$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5 \text { or } 3}\right), \quad 136.93 \quad\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right), \quad 164.80 \quad(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=9 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \quad$ ppm. $\quad{ }^{31} \mathrm{P} \quad \mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \quad \delta$ 65.77 ppm . The analytical data for $12:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 0.94\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $0.98\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $1.23\left(\mathrm{dd}, J=6.8,20 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34$ (septet, $J=6.8 \mathrm{~Hz}, \quad 2 \mathrm{H}, ~ \mathrm{CH}), \quad 6.30(\mathrm{~s}, 1 \mathrm{H}, \quad \mathrm{Cp}-\mathrm{H}), 6.40$ (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.02\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $7.13\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 12.29\left(\mathrm{CH}_{3}\right), 14.13$ $\left(\mathrm{CH}_{3}\right), 14.92\left(\mathrm{CH}_{3}\right), 19.27\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=5 \mathrm{~Hz}\right), 19.31(\mathrm{~d}$,
$\left.\left.{ }^{1} J_{\mathrm{CP}}=3 \mathrm{~Hz}\right), 21.10\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=20 \mathrm{~Hz}, \mathrm{PCHCH}\right)_{3}\right), 30.30(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=15 \mathrm{~Hz}, \quad \mathrm{PCHCH} \mathrm{H}_{3}\right), \quad 30.39 \quad\left(\mathrm{~d}, \quad{ }^{2} J_{\mathrm{CP}}=14 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{3}\right), \quad 113.84\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 122.27\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 124.30(\mathrm{Cp}-\mathrm{CH}), 129.00\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or 3$), 129.09$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 131.01\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 131.43\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 137.47\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 137.81\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 141.20$ $\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right), 163.56\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm}$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.04 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Cl}_{2-}\right.$ NPTi): C, $55.58 ; \mathrm{H}, 6.53 ; \mathrm{N}, 3.24$. Found: C, $55.82 ; \mathrm{H}$, 6.39; N, 3.37\%.

3.12. Compound 13

The complex was synthesized from 7 using same conditions and procedures as for 9 . Overall yield from 7 was 56%. The analytical data for 13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $1.1-2.6(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Cy}), 1.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.67(\mathrm{~d}$, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 7.23(\mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.39(\mathrm{td}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.42\left(\mathrm{~d}, \quad J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.64\left(\mathrm{CH}_{3}\right), 25.82(\mathrm{Cy}), 27.04(\mathrm{Cy})$, 27.15 (d, $\left.{ }^{1} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \quad \mathrm{Cy}\right), 27.92$ (Cy), 31.17 (d, $\left.{ }^{2} J_{\mathrm{CP}}=15 \mathrm{~Hz}, \mathrm{Cy}\right), 40.17\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=14 \mathrm{~Hz}, \mathrm{Cy}\right), 113.42$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 121.70\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 124.22(\mathrm{Cp}-$ $\mathrm{CH}), 128.66\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5 \text { or } 3}\right), 128.83\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5 \text { or } 3}\right), 130.27$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 138.14\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 141.15$ $\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right), 163.29\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.49$ ppm. Anal. Calc. $\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{Cl}_{2^{-}}\right.$ NPTi): C, 60.26; H, 6.88; N, 2.81. Found: C, 60.44; H, 6.63; N, 2.95\%.

3.13. Compound 14

The complex was synthesized from $\mathbf{8}$ using same conditions and procedures as for 9 . Overall yield from 8 was 78%. Single crystals of 14 were obtained by vapor-phase addition of pentane to a benzene solution. The analytical data for 14: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.1-2.6(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Cy})$, $1.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 6.49\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.96$ $\left(\mathrm{t}, \quad J=7.6 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{4}\right), \quad 7.08-7.20 \quad\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{4}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 12.35\left(\mathrm{CH}_{3}\right), 14.10\left(\mathrm{CH}_{3}\right)$, $14.99\left(\mathrm{CH}_{3}\right), 26.26(\mathrm{Cy}), 27.41(\mathrm{Cy}), 27.53\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=5 \mathrm{~Hz}\right.$, Cy), 28.36 (Cy), 31.53 (d, $\left.{ }^{2} J_{\mathrm{CP}}=17 \mathrm{~Hz}, \mathrm{Cy}\right), 40.42$ (d, $\left.{ }^{2} J_{\mathrm{CP}}=15 \mathrm{~Hz}, \mathrm{Cy}\right), 40.48\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=15 \mathrm{~Hz}, \mathrm{Cy}\right), 113.68$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 122.40\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 124.12(\mathrm{Cp}-$ $\mathrm{CH}), 128.93\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 129.09\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 131.00$ $\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 131.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 137.20$ $\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 137.54\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 141.01\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right)$, $164.22\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \mathrm{ppm} .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 17.26$ ppm. Anal. Calc. $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{NPTi}\right): \mathrm{C}, 60.95 ; \mathrm{H}$, 7.08 ; N, 2.73. Found: C, 60.78; H, 7.17; N, 2.99%.

3.14. Compound 15

The complex was synthesized by the reaction 4 and $\mathrm{Zr}\left(\mathrm{NMe}_{2}\right)_{4}$ using same conditions and procedures as for
9. Overall yield from 4 was 83%. The NMR data for the bis(dimethylamido)zirconium complex: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 0.80\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=12 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right)$, $1.07\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=12 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right)$, $1.09\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=18 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right)$, $1.14\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=18 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right)$, $1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.34-2.48 (m, $2 \mathrm{H}, \mathrm{CH}), 2.87\left(6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.14(6 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 5.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.89\left(\mathrm{td}, J=1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.16(\mathrm{td}$, $\left.J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.21(\mathrm{dd}, J=1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 44.47 \mathrm{ppm}$. The analytical data for 15: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.94\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$, $\left.\left.{ }^{3} J_{\mathrm{PH}}=14 \mathrm{~Hz}, \quad 3 \mathrm{H}, \quad \mathrm{CHCH}\right)_{3}\right), 0.97\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$, $\left.\left.{ }^{3} J_{\mathrm{PH}}=14 \mathrm{~Hz}, \quad 3 \mathrm{H}, \quad \mathrm{CHCH}\right)_{3}\right), 1.10\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=20 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH} H_{3}\right), 1.11\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=20 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20-2.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})$, $6.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 6.44\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.94$ (td, $\left.J=0.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.08-7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 11.26\left(\mathrm{CH}_{3}\right), 13.24\left(\mathrm{CH}_{3}\right)$, $13.63\left(\mathrm{CH}_{3}\right), 19.15\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=3 \mathrm{~Hz}\right), 19.20\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=3 \mathrm{~Hz}\right)$, $20.53\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=19 \mathrm{~Hz}, \mathrm{PCHCH} 3\right), 28.25\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{3}\right), 28.32\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11 \mathrm{~Hz}, \quad \mathrm{PCHCH}_{3}\right), 115.90$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{4}\right), 116.56\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{6}\right), 122.93(\mathrm{Cp}-$ $\mathrm{CH}), 126.12\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 129.02\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or 3$), 129.81$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{5}\right.$ or $\left.{ }^{3}\right), 130.41\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{2}\right), 131.03$ $\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 131.20\left(\mathrm{Cp}-\mathrm{CCH}_{3}\right), 136.73\left(\mathrm{Cp}-\mathrm{C}^{\text {bridgehead }}\right)$, $160.31 \quad\left(\mathrm{~d}, \quad{ }^{2} J_{\mathrm{CP}}=10 \mathrm{~Hz}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{1}\right) \quad \mathrm{ppm} .{ }^{31} \mathrm{P} \quad \mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 34.12 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{NPZr}\right): \mathrm{C}$,

Table 2
Crystallographic Parameters of 10,14 and 16

	$\mathbf{1 0}$	$\mathbf{1 4}$	$\mathbf{1 6}$
Formula	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NPTi}$	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{NPTi}$	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{PTi}$
F_{w}	500.23	512.33	503.46
Size $\left(\mathrm{mm}^{3}\right)$	$0.1 \times 0.1 \times 0.3$	$0.15 \times 0.15 \times 0.5$	$0.2 \times 0.15 \times 0.05$
$a(\AA)$	$10.777(8)$	$10.205(3)$	$9.655(3)$
$b(\AA)$	$13.924(16)$	$17.172(6)$	$15.373(7)$
$c(\AA)$	$16.261(17)$	$14.795(5)$	$17.746(7)$
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	90	$103.857(11)$	$98.110(14)$
$\gamma\left({ }^{\circ}\right)$	90	90	
$V\left(\mathrm{~A}^{3}\right)$	90	$2517.3(15)$	$2607.6(18)$
$C_{\text {Crystal system }}$	$2440(4)$	$\mathrm{Mrthorhombic})$	Monoclinic
Space group	$P 212121$	$P 21 / n$	$P 21 / n$
D (calc), gcm ${ }^{-1}$	1.362	1.352	1.282
Z	4	4	4
μ, mm ${ }^{-1}$	0.649	0.630	0.412
Number of	22465	23058	23913
\quad data collected			
Number of	5523	5633	5858
\quad unique data		425	447
Number of	377		0.0952
\quad variables	0.0510	0.2580	0.0641
$R(\%)$	1.019	0.1746	
$R_{\mathrm{w}}(\%)$	0.1302	1.083	
Goodness of fit	1.002		

Data collected at $150(2) \mathrm{K}$ with Mo $\mathrm{K} \alpha$ radiation $(\lambda(\mathrm{K} \alpha)=0.7107 \AA)$, $R(F)=\sum| | F_{\mathrm{o}}\left|-F_{\mathrm{c}} \| / \sum\right| F_{\mathrm{o}} \mid \quad$ with $\quad F_{\mathrm{o}}>2.0 \sigma(I), \quad R_{\mathrm{w}}=\left[\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /\right.$ $\left.\sum\left[w\left(F_{\mathrm{o}}\right)^{2}\right]^{2}\right]^{1 / 2}$ with $F_{\mathrm{o}}>2.0 \sigma(I)$.
50.51 ; H, 5.93 ; N, 2.95\%. Found: C, 50.33 ; H, 5.69 ; N, 3.29%.

3.15. X-ray crystallography

Crystals of $\mathbf{1 0}, \mathbf{1 4}$, and $\mathbf{1 6}$ coated with grease (Apiezon N) were mounted onto a thin glass fiber with epoxy glue and placed in a cold nitrogen stream at $150(2) \mathrm{K}$ on Rigaku single crystal X-ray diffractometer. The structures were solved by direct methods (shelxl-97) and refined against all F^{2} data (shelxl-97). All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were treated as idealized contributions. The crystal data and refinement results are summarized in Table 2.

4. Supplementary material

CCDC 615699, 615700 and 615701 contain the supplementary crystallographic data for $\mathbf{1 0}, \mathbf{1 4}$ and $\mathbf{1 6}$. These data can be obtained free of charge via http://www.ccdc.cam. ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: $(+44)$ 1223-336-033; or e-mail: deposit@ ccdc.cam.ac.uk.

Acknowledgement

This work was supported by grant No. R01-2006-000-10271-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

References

[1] (a) A.L. McKnight, R.M. Waymouth, Chem. Rev. 98 (1998) 2587; (b) V.C. Gibson, S.K. Spitzmesser, Chem. Rev. 103 (2003) 283.
[2] (a) Review: H.H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R.M. Waymouth, Angew. Chem., Int. Ed. Engl. 34 (1995) 1143; (b) G.J.P. Britovsek, V.C. Gibson, D.F. Wass, Angew. Chem., Int. Ed. Eng. 38 (1999) 429;
(c) H.G. Alt, A. Köpple, Chem. Rev. 100 (2000) 1205;
(d) G.W. Coates, Chem. Rev. 100 (2000) 1223;
(e) L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 100 (2000) 1253;
(f) E.Y.-X. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391;
(g) H.G. Alt, Dalton Trans. (2005) 3271.
[3] (a) L.J. Irwin, S.A. Miller, J. Am. Chem. Soc. 127 (2005) 9972;
(b) C. Grandini, I. Camurati, S. Guidotti, N. Mascellani, L. Resconi, I.E. Nifant'ev, I.A. Kashulin, P.V. Ivchenko, P. Mercandelli, A. Sironi, Organometallics 23 (2004) 344;
(c) C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, L. Resconi, A. Fait, E. Ciaccia, I. Camurati, J. Am. Chem. Soc. 125 (2003) 10913;
(d) J. Klosin, W.J. Kruper Jr., P.N. Nickias, G.R. Roof, P. De Waele, K.A. Abboud, Organometallics 20 (2001) 2663.
[4] G. Altenhoff, S. Bredeau, G. Erker, G. Kehr, O. Kataeva, R. Frohlich, Organometallics 21 (2002) 4084.
[5] (a) K. Kunz, G. Erker, S. Doring, R. Frohlich, G. Kehr, J. Am. Chem. Soc. 123 (2001) 6181;
(b) C. Wang, G. Erker, G. Kehr, K. Wedeking, R. Frohlich, Organometallics 24 (2005) 4760;
(c) T.H. Kim, Y.C. Won, B.Y. Lee, D.M. Shin, Y.K. Chung, Eur. J. Inorg. Chem. (2004) 1522;
(d) D. van Leusen, D.J. Beetstra, B. Hessen, J.H. Teuben, Organometallics 19 (2000) 4084.
[6] (a) D.J. Cho, C.J. Wu, S. S, W.-S. Han, S.O. Kang, B.Y. Lee, Organometallics 25 (2006) 2133;
(b) D.J. Cho, C.J. Wu, T. Bok, E.J. Lee, C.H. Lee, W.-S. Han, S.O. Kang, B.Y. Lee, Dalton Trans. (2006) 4056.
[7] D.W. Carpenetti, L. Kloppenburg, J.T. Kupec, J.L. Petersen, Organometallics 15 (1996) 1572.
[8] (a) Z. Fei, P.J. Dyson, Coord. Chem. Rev. 249 (2005) 2056;
(b) Z. Fei, R. Scopelliti, P.J. Dyson, Eur. J. Inorg. Chem. (2003) 3527;
(c) N. Poetschke, M. Nieger, M.A. Khan, E. Niecke, M.T. Ashby, Inorg. Chem. 36 (1997) 4087;
(d) Z. Fei, R. Scopelliti, P.J. Dyson, Inorg. Chem. 42 (2003) 2125;
(e) H. Nagashima, T. Sue, T. Oda, A. Kanemitsu, T. Matsumoto, Y. Motoyama, Y. Sunada, Organometallics 25 (2006) 1987;
(f) Y. Sunada, T. Sue, T. Matsumoto, H. Nagashima, J. Organomet. Chem. 691 (2006) 3176.
[9] O. Kühl, T. Koch, F.B. Somoza Jr., P.C. Junk, E. Hey-Hawkins, D. Plat, M.S. Eisen, J. Organomet. Chem. 604 (2000) 116.
[10] C. Qi, S. Zhang, J. Sun, J. Organomet. Chem. 690 (2005) 2941.
[11] P. Jutzi, Chem. Rev. 86 (1986) 983.
[12] D.G. Gorenstein, Phosphorous-31 spin-spin coupling constants: principles and applications, in: D.G. Gorenstein (Ed.), Phospho-rous-31 NMR: Principles and Applications, Academic Press, 1984, pp. 37-53.
[13] B.Y. Lee, J.W. Han, I.S. Lee, Y.K.J. Chung, Organomet. Chem. 627 (2001) 233.
[14] (a) W.-Q. Hu, X.-L. Sun, C. Wang, Y. Gao, Y. Tang, et al., Organometallics 23 (2004) 1684;
(b) C.A. Willoughby, R.R. Duff Jr., W.M. Davis, S.L. Buchwald, Organometallics 15 (1996) 472.
[15] (a) J.T. Park, S.C. Yoon, B.-J. Bae, W.S. Seo, I.-H. Suh, T.K. Han, J.R. Park, Organometallics 19 (2000) 1269;
(b) S.C. Yoon, B.-J. Bae, I.-H. Suh, J.T. Park, Organometallics 18 (1999) 2049.
[16] F. Amor, A. Butt, K.E. du Plooy, T.P. Spaniol, J. Okuda, Organometallics 17 (1998) 5836.
[17] (a) K. Nomura, W. Wang, M. Fujiki, J. Liu, Chem. Commun. (2006) 2659;
(b) W. Wang, M. Fujiki, K. Nomura, J. Am. Chem. Soc. 127 (2005) 4582, and references therein.

[^0]: * Corresponding author. Tel.: +82 31219 1844; Fax: +82 312192394.

 E-mail address: bunyeoul@ajou.ac.kr (B. Yeoul Lee).

